761 research outputs found

    Second harmonic generating (SHG) nanoprobes for in vivo imaging

    Get PDF
    Fluorescence microscopy has profoundly changed cell and molecular biology studies by permitting tagged gene products to be followed as they function and interact. The ability of a fluorescent dye to absorb and emit light of different wavelengths allows it to generate startling contrast that, in the best cases, can permit single molecule detection and tracking. However, in many experimental settings, fluorescent probes fall short of their potential due to dye bleaching, dye signal saturation, and tissue autofluorescence. Here, we demonstrate that second harmonic generating (SHG) nanoprobes can be used for in vivo imaging, circumventing many of the limitations of classical fluorescence probes. Under intense illumination, such as at the focus of a laser-scanning microscope, these SHG nanocrystals convert two photons into one photon of half the wavelength; thus, when imaged by conventional two-photon microscopy, SHG nanoprobes appear to generate a signal with an inverse Stokes shift like a fluorescent dye, but with a narrower emission. Unlike commonly used fluorescent probes, SHG nanoprobes neither bleach nor blink, and the signal they generate does not saturate with increasing illumination intensity. The resulting contrast and detectability of SHG nanoprobes provide unique advantages for molecular imaging of living cells and tissues

    Morphogen Transport in Epithelia

    Full text link
    We present a general theoretical framework to discuss mechanisms of morphogen transport and gradient formation in a cell layer. Trafficking events on the cellular scale lead to transport on larger scales. We discuss in particular the case of transcytosis where morphogens undergo repeated rounds of internalization into cells and recycling. Based on a description on the cellular scale, we derive effective nonlinear transport equations in one and two dimensions which are valid on larger scales. We derive analytic expressions for the concentration dependence of the effective diffusion coefficient and the effective degradation rate. We discuss the effects of a directional bias on morphogen transport and those of the coupling of the morphogen and receptor kinetics. Furthermore, we discuss general properties of cellular transport processes such as the robustness of gradients and relate our results to recent experiments on the morphogen Decapentaplegic (Dpp) that acts in the fruit fly Drosophila

    Clinical expression of plakophilin-2 mutations in familial arrhythmogenic right ventricular cardiomyopathy

    Get PDF
    Background - Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited cardiac disorder characterized by loss of cardiomyocytes and their replacement by adipose and fibrous tissue. It is considered a disease of cell adhesion because mutations in desmosomal genes, desmoplakin and plakoglobin, have been implicated in the pathogenesis of ARVC. In a recent report, mutations in plakophilin-2, a gene highly expressed in cardiac desmosomes, have been shown to cause ARVC.Methods and Results - We investigated 100 white patients with ARVC for mutations in plakophilin-2. Nine different mutations were identified by direct sequencing in 11 cases. Five of these mutations are novel (A733fsX740, L586fsX658, V570fsX576, R413X, and P533fsX561) and predicted to cause a premature truncation of the plakophilin-2 protein. Family studies showed incomplete disease expression in mutation carriers and identified a number of individuals who would be misdiagnosed with the existing International Task Force and modified diagnostic criteria for ARVC.Conclusions - In this study, we provide new evidence that mutations in the desmosomal plakophilin-2 gene can cause ARVC. A systematic clinical evaluation of mutation carriers within families demonstrated variable phenotypic expression, even among individuals with the same mutation, and highlighted the need for a more accurate set of diagnostic criteria for ARVC

    THE CO.TR.I.S SYSTEM: TOWARDS A SMARTER COASTAL TRANSPORT NETWORK FOR SMART ISLANDS

    Get PDF
    The Coastal Transport Information System (Co.Tr.I.S) is a multifunction information system that is developed for the effective design of coastal transportation lines. The system incorporates several subsystems which include the models, tools, and techniques that support the design of improved coastal networks. Co.Tr.I.S main aim is to support any decision making process of the involved players (Ministry, Maritime companies, Local Authorities, Travel Agencies, Passengers, etc) regarding the improvement & the optimal use of a coastal transport network. Co.Tr.I.S data retrieval, analysis, visualization, network design & decision support can accelerate the very slow (currently annual in Aegean) rate of coastal transport network update/upgrade procedures, and, create smarter network implementations that may adapt online on the various demand or requirement changes or updates. Connections, transportation, mobility, as well as port automation are some of the key factors for the “smartification” of entire islands especially in an archipelago like the Aegean Sea. In this work, we present the network design optimization functionality of Co.Tr.I.S, the various optimization stages, the Genetic Algorithm (GA) implementations and its potential to propose a better network design based on each user preferences. A sample case study is given to show its smartness & adaptability to each user needs and, finally, a discussion follows on how it could be complemented by emerging smart technologies for smarter islands

    PhOTO Zebrafish: A Transgenic Resource for In Vivo Lineage Tracing during Development and Regeneration

    Get PDF
    Background: Elucidating the complex cell dynamics (divisions, movement, morphological changes, etc.) underlying embryonic development and adult tissue regeneration requires an efficient means to track cells with high fidelity in space and time. To satisfy this criterion, we developed a transgenic zebrafish line, called PhOTO, that allows photoconvertible optical tracking of nuclear and membrane dynamics in vivo. Methodology: PhOTO zebrafish ubiquitously express targeted blue fluorescent protein (FP) Cerulean and photoconvertible FP Dendra2 fusions, allowing for instantaneous, precise targeting and tracking of any number of cells using Dendra2 photoconversion while simultaneously monitoring global cell behavior and morphology. Expression persists through adulthood, making the PhOTO zebrafish an excellent tool for studying tissue regeneration: after tail fin amputation and photoconversion of a ~100µm stripe along the cut area, marked differences seen in how cells contribute to the new tissue give detailed insight into the dynamic process of regeneration. Photoconverted cells that contributed to the regenerate were separated into three distinct populations corresponding to the extent of cell division 7 days after amputation, and a subset of cells that divided the least were organized into an evenly spaced, linear orientation along the length of the newly regenerating fin. Conclusions/Significance: PhOTO zebrafish have wide applicability for lineage tracing at the systems-level in the early embryo as well as in the adult, making them ideal candidate tools for future research in development, traumatic injury and regeneration, cancer progression, and stem cell behavior

    Robust formation of morphogen gradients

    Full text link
    We discuss the formation of graded morphogen profiles in a cell layer by nonlinear transport phenomena, important for patterning developing organisms. We focus on a process termed transcytosis, where morphogen transport results from binding of ligands to receptors on the cell surface, incorporation into the cell and subsequent externalization. Starting from a microscopic model, we derive effective transport equations. We show that, in contrast to morphogen transport by extracellular diffusion, transcytosis leads to robust ligand profiles which are insensitive to the rate of ligand production

    Functional Brain Imaging with Multi-Objective Multi-Modal Evolutionary Optimization

    Get PDF
    Functional brain imaging is a source of spatio-temporal data mining problems. A new framework hybridizing multi-objective and multi-modal optimization is proposed to formalize these data mining problems, and addressed through Evolutionary Computation (EC). The merits of EC for spatio-temporal data mining are demonstrated as the approach facilitates the modelling of the experts' requirements, and flexibly accommodates their changing goals

    Inhibition of angiogenesis- and inflammation-inducing factors in human colon cancer cells in vitro and in ovo by free and nanoparticle-encapsulated redox dye, DCPIP

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The redox dye, DCPIP, has recently shown to exhibit anti-melanoma activity <it>in vitro </it>and <it>in vivo</it>. On the other hand, there is increasing evidence that synthetic nanoparticles can serve as highly efficient carriers of drugs and vaccines for treatment of various diseases. These nanoparticles have shown to serve as potent tools that can increase the bioavailability of the drug/vaccine by facilitating absorption or conferring sustained and improved release. Here, we describe results on the effects of free- and nanoparticle-enclosed DCPIP as anti-angiogenesis and anti-inflammation agents in a human colon cancer HCT116 cell line <it>in vitro</it>, and in induced angiogenesis <it>in ovo</it>.</p> <p>Results</p> <p>The studies described in this report indicate that (a) DCPIP inhibits proliferation of HCT116 cells <it>in vitro</it>; (b) DCPIP can selectively downregulate expression of the pro-angiogenesis growth factor, VEGF; (c) DCPIP inhibits activation of the transcriptional nuclear factor, NF-κB; (d) DCPIP can attenuate or completely inhibit VEGF-induced angiogenesis in the chick chorioallantoic membrane; (e) DCPIP at concentrations higher than 6 μg/ml induces apoptosis in HCT116 cells as confirmed by detection of caspase-3 and PARP degradation; and (f) DCPIP encapsulated in nanoparticles is equally or more effective than free DCPIP in exhibiting the aforementioned properties (a-e) in addition to reducing the expression of COX-2, and pro-inflammatory proteins IL-6 and IL-8.</p> <p>Conclusions</p> <p>We propose that, DCPIP may serve as a potent tool to prevent or disrupt the processes of cell proliferation, tissue angiogenesis and inflammation by directly or indirectly targeting expression of specific cellular factors. We also propose that the activities of DCPIP may be long-lasting and/or enhanced if it is delivered enclosed in specific nanoparticles.</p

    Effects of glycerol and creatine hyperhydration on doping-relevant blood parameters

    Get PDF
    Glycerol is prohibited as an ergogenic aid by the World Anti-Doping Agency (WADA) due to the potential for its plasma expansion properties to have masking effects. However, the scientific basis of the inclusion of Gly as a “masking agent” remains inconclusive. The purpose of this study was to determine the effects of a hyperhydrating supplement containing Gly on doping-relevant blood parameters. Nine trained males ingested a hyperhydrating mixture twice per day for 7 days containing 1.0 g•kg&lt;sup&gt;−1&lt;/sup&gt; body mass (BM) of Gly, 10.0 g of creatine and 75.0 g of glucose. Blood samples were collected and total hemoglobin (Hb) mass determined using the optimized carbon monoxide (CO) rebreathing method pre- and post-supplementation. BM and total body water (TBW) increased significantly following supplementation by 1.1 ± 1.2 and 1.0 ± 1.2 L (BM, P &lt; 0.01; TBW, P &lt; 0.01), respectively. This hyperhydration did not significantly alter plasma volume or any of the doping-relevant blood parameters (e.g., hematocrit, Hb, reticulocytes and total Hb-mass) even when Gly was clearly detectable in urine samples. In conclusion, this study shows that supplementation with hyperhydrating solution containing Gly for 7 days does not significantly alter doping-relevant blood parameters
    corecore